Graduated orders in equivariant Iwasawa theory

Ben Forrás

University of Ottawa

24 November 2025

 ${\it R}$ noetherian integrally closed integral domain

k = Frac(R) quotient field, characteristic 0 (avoid separability questions)

A finite dimensional k-algebra

R noetherian integrally closed integral domain

k = Frac(R) quotient field, characteristic 0 (avoid separability questions)

A finite dimensional k-algebra

Definition

An R-order M in A is a subring $M \le A$ with the same unity element s.t.

M is a finitely generated R-module and $k \cdot M = A$.

R noetherian integrally closed integral domain

k = Frac(R) quotient field, characteristic 0 (avoid separability questions) A finite dimensional k-algebra

Definition

An R-order M in A is a subring $M \leq A$ with the same unity element s.t.

M is a finitely generated R-module and $k \cdot M = A$.

E.g. $R = \mathbb{Z}$, $k = \mathbb{Q}$, A number field, $M = \mathcal{O}_A$ ring of integers.

More generally: every element in M is integral over R.

R noetherian integrally closed integral domain

k = Frac(R) quotient field, characteristic 0 (avoid separability questions)

A finite dimensional k-algebra

Definition

An R-order M in A is a subring $M \leq A$ with the same unity element s.t.

M is a finitely generated R-module and $k \cdot M = A$.

E.g. $R = \mathbb{Z}$, $k = \mathbb{Q}$, A number field, $M = \mathcal{O}_A$ ring of integers. More generally: every element in M is integral over R.

Slogan: in non-commutative settings, integrality is measured by being contained in an order.

R noetherian integrally closed integral domain

k = Frac(R) quotient field, characteristic 0 (avoid separability questions)

A finite dimensional k-algebra

Definition

An *R*-order *M* in *A* is a subring $M \le A$ with the same unity element s.t.

M is a finitely generated R-module and $k \cdot M = A$.

E.g. $R = \mathbb{Z}$, $k = \mathbb{Q}$, A number field, $M = \mathcal{O}_A$ ring of integers. More generally: every element in M is integral over R.

Slogan: in non-commutative settings, integrality is measured by being contained in an order.

Maximal order: maximal with respect to containment

R noetherian integrally closed integral domain

k = Frac(R) quotient field, characteristic 0 (avoid separability questions)

A finite dimensional k-algebra

Definition

An *R*-order *M* in *A* is a subring $M \le A$ with the same unity element s.t.

M is a finitely generated R-module and $k \cdot M = A$.

E.g. $R = \mathbb{Z}$, $k = \mathbb{Q}$, A number field, $M = \mathcal{O}_A$ ring of integers. More generally: every element in M is integral over R.

Slogan: in non-commutative settings, integrality is measured by being contained in an order.

Maximal order: maximal with respect to containment

Maximal orders exist, and they are well-behaved under direct sums, localisation, completion

 ${\mathcal G}$ admissible 1-dim'l p-adic Lie group, i.e. ${\mathcal G}=H
times \Gamma$ with H finite, $\Gamma\simeq {\mathbb Z}_p$

 $\mathcal G$ admissible 1-dim'l p-adic Lie group, i.e. $\mathcal G=H\rtimes \Gamma$ with H finite, $\Gamma\simeq \mathbb Z_p$ $\Lambda(\mathcal G)=\mathbb Z_p[\![\mathcal G]\!]$ completed group ring / Iwasawa algebra

 $\mathcal G$ admissible 1-dim'l p-adic Lie group, i.e. $\mathcal G=H\rtimes \Gamma$ with H finite, $\Gamma\simeq \mathbb Z_p$ $\Lambda(\mathcal G)=\mathbb Z_p[\![\mathcal G]\!]$ completed group ring / lwasawa algebra $\mathcal Q(\mathcal G)=\operatorname{Quot}(\Lambda(\mathcal G))$ total ring of quotients: invert all regular elements

 \mathcal{G} admissible 1-dim'l p-adic Lie group, i.e. $\mathcal{G}=H\rtimes\Gamma$ with H finite, $\Gamma\simeq\mathbb{Z}_p$ $\Lambda(\mathcal{G})=\mathbb{Z}_p[\![\mathcal{G}]\!]$ completed group ring / Iwasawa algebra $\mathcal{Q}(\mathcal{G})=\mathrm{Quot}(\Lambda(\mathcal{G}))$ total ring of quotients: invert all regular elements

Fact: $\mathcal{Q}(\mathcal{G})$ is a semisimple $\Lambda(\Gamma_0)$ -algebra, where $\Gamma_0 = \Gamma^{p^n} \leq \mathcal{G}$ central

 \mathcal{G} admissible 1-dim'l p-adic Lie group, i.e. $\mathcal{G}=H\rtimes\Gamma$ with H finite, $\Gamma\simeq\mathbb{Z}_p$ $\Lambda(\mathcal{G})=\mathbb{Z}_p[\![\mathcal{G}]\!]$ completed group ring / lwasawa algebra $\mathcal{Q}(\mathcal{G})=\mathrm{Quot}(\Lambda(\mathcal{G}))$ total ring of quotients: invert all regular elements

Fact: $\mathcal{Q}(\mathcal{G})$ is a semisimple $\Lambda(\Gamma_0)$ -algebra, where $\Gamma_0 = \Gamma^{p^n} \leq \mathcal{G}$ central

$$K_1(\mathcal{Q}(\mathcal{G})) = \left(\varinjlim_n \mathsf{GL}_n(\mathcal{Q}(\mathcal{G}))\right)^{\mathsf{ab}}$$
 Whitehead group

 \mathcal{G} admissible 1-dim'l p-adic Lie group, i.e. $\mathcal{G}=H\rtimes\Gamma$ with H finite, $\Gamma\simeq\mathbb{Z}_p$ $\Lambda(\mathcal{G})=\mathbb{Z}_p[\![\mathcal{G}]\!]$ completed group ring / Iwasawa algebra $\mathcal{Q}(\mathcal{G})=\mathrm{Quot}(\Lambda(\mathcal{G}))$ total ring of quotients: invert all regular elements

Fact: $\mathcal{Q}(\mathcal{G})$ is a semisimple $\Lambda(\Gamma_0)$ -algebra, where $\Gamma_0 = \Gamma^{p^n} \leq \mathcal{G}$ central

$$\mathcal{K}_1(\mathcal{Q}(\mathcal{G})) = \left(\varinjlim_n \mathsf{GL}_n(\mathcal{Q}(\mathcal{G}))\right)^{\mathsf{ab}}$$
 Whitehead group

Equivariant Iwasawa main conjecture (very imprecise formulation)

$$\mathfrak{z}(\mathcal{Q}(\mathcal{G}))^{\times} \stackrel{\mathsf{nr}}{\longleftarrow} K_1(\mathcal{Q}(\mathcal{G})) \stackrel{\partial}{\longrightarrow} K_0(\Lambda(\mathcal{G}), \mathcal{Q}(\mathcal{G}))$$
 analytic $\Phi \longleftarrow \exists \zeta \longmapsto [C^{\bullet}]$ algebraic

 \mathcal{G} admissible 1-dim'l p-adic Lie group, i.e. $\mathcal{G}=H\rtimes\Gamma$ with H finite, $\Gamma\simeq\mathbb{Z}_p$ $\Lambda(\mathcal{G})=\mathbb{Z}_p[\![\mathcal{G}]\!]$ completed group ring / Iwasawa algebra $\mathcal{Q}(\mathcal{G})=\mathrm{Quot}(\Lambda(\mathcal{G}))$ total ring of quotients: invert all regular elements

Fact: $\mathcal{Q}(\mathcal{G})$ is a semisimple $\Lambda(\Gamma_0)$ -algebra, where $\Gamma_0 = \Gamma^{p^n} \leq \mathcal{G}$ central

$$K_1(\mathcal{Q}(\mathcal{G})) = \left(\varinjlim_n \mathsf{GL}_n(\mathcal{Q}(\mathcal{G}))\right)^{\mathsf{ab}}$$
 Whitehead group

Equivariant Iwasawa main conjecture (very imprecise formulation)

$$\mathfrak{z}(\mathcal{Q}(\mathcal{G}))^{\times} \stackrel{\mathsf{nr}}{\longleftarrow} K_1(\mathcal{Q}(\mathcal{G})) \stackrel{\partial}{\longrightarrow} K_0(\Lambda(\mathcal{G}), \mathcal{Q}(\mathcal{G}))$$
 analytic $\Phi \longleftarrow \exists \zeta \longmapsto [C^{\bullet}]$ algebraic

Proven for totally real number fields under $\mu=0$ by Ritter–Weiss (2011) and Kakde (2013), unconditionally for abelian $\mathcal G$ by Johnston–Nickel (2020)

 \mathcal{G} admissible 1-dim'l p-adic Lie group, i.e. $\mathcal{G}=H\rtimes\Gamma$ with H finite, $\Gamma\simeq\mathbb{Z}_p$ $\Lambda(\mathcal{G})=\mathbb{Z}_p[\![\mathcal{G}]\!]$ completed group ring / Iwasawa algebra $\mathcal{Q}(\mathcal{G})=\mathrm{Quot}(\Lambda(\mathcal{G}))$ total ring of quotients: invert all regular elements

Fact:
$$\mathcal{Q}(\mathcal{G})$$
 is a semisimple $\Lambda(\Gamma_0)$ -algebra, where $\Gamma_0=\Gamma^{p^n}\leq \mathcal{G}$ central

$$K_1(\mathcal{Q}(\mathcal{G})) = \left(\varinjlim_n \mathrm{GL}_n(\mathcal{Q}(\mathcal{G}))\right)^{\mathrm{ab}}$$
 Whitehead group

Equivariant Iwasawa main conjecture (very imprecise formulation)

$$\mathfrak{z}(\mathcal{Q}(\mathcal{G}))^{ imes} \xleftarrow{\mathsf{nr}} \mathsf{K}_1ig(\mathcal{Q}(\mathcal{G})ig) \stackrel{\partial}{\longrightarrow} \mathsf{K}_0(\mathsf{\Lambda}(\mathcal{G}),\mathcal{Q}(\mathcal{G}))$$

analytic
$$\Phi \longleftarrow \exists \zeta \longmapsto [C^{ullet}]$$
 algebraic

Proven for totally real number fields under $\mu=0$ by Ritter–Weiss (2011) and Kakde (2013), unconditionally for abelian $\mathcal G$ by Johnston–Nickel (2020)

Goal: understand orders in $\mathcal{Q}(\mathcal{G})$, then show that ζ comes from an order

Outline

1 Preliminaries and motivation

- 2 Maximal orders in the one-dimensional case: local fields
- 3 Maximal orders in the two-dimensional case: Iwasawa algebras

4 Non-maximal orders

One-dimensional case: local fields

D skew field: vector space over its centre $\mathfrak{z}(D) = k$

Standing assumption: $\dim_k D < \infty$

D skew field: vector space over its centre $\mathfrak{z}(D) = k$

Standing assumption: $\dim_k D < \infty$

In this case: $\dim_k D$ is a square, $\operatorname{ind}(D) := \sqrt{\dim_k D}$ index of D

D skew field: vector space over its centre $\mathfrak{z}(D) = k$

Standing assumption: $\dim_k D < \infty$

In this case: $\dim_k D$ is a square, $\operatorname{ind}(D) := \sqrt{\dim_k D}$ index of D

If $E \subseteq D$ is a maximal subfield, then:

 $[E:k] = \operatorname{ind}(D) = \dim_E D \text{ and } E \otimes_k D \simeq M_{\operatorname{ind} D}(E).$

D skew field: vector space over its centre $\mathfrak{z}(D) = k$

Standing assumption: $\dim_k D < \infty$

In this case: $\dim_k D$ is a square, $\operatorname{ind}(D) := \sqrt{\dim_k D}$ index of D

If $E \subseteq D$ is a maximal subfield, then:

$$[E:k] = \operatorname{ind}(D) = \dim_E D \text{ and } E \otimes_k D \simeq M_{\operatorname{ind} D}(E).$$

From now on: R complete discrete valuation ring with finite residue field, k = Frac(R) local field.

D skew field: vector space over its centre $\mathfrak{z}(D) = k$

Standing assumption: $\dim_k D < \infty$

In this case: $\dim_k D$ is a square, $\operatorname{ind}(D) := \sqrt{\dim_k D}$ index of D

If $E \subseteq D$ is a maximal subfield, then:

$$[E:k] = \operatorname{ind}(D) = \dim_E D \text{ and } E \otimes_k D \simeq M_{\operatorname{ind} D}(E).$$

From now on: R complete discrete valuation ring with finite residue field, k = Frac(R) local field.

Theorem (Hasse)

The valuation on k admits a unique extension v to D, i.e. $\forall a, b \in D$:

•
$$v(a) = \infty \Leftrightarrow a = 0$$
;

•
$$v(a+b) \geq \min\{v(a), v(b)\};$$

•
$$v(ab) = v(a) + v(b) = v(ba);$$

• the value group $v(D^{\times})$ is infinite cyclic.

D skew field: vector space over its centre $\mathfrak{z}(D) = k$

Standing assumption: $\dim_k D < \infty$

In this case: $\dim_k D$ is a square, $\operatorname{ind}(D) := \sqrt{\dim_k D}$ index of D

If $E \subseteq D$ is a maximal subfield, then:

$$[E:k] = \operatorname{ind}(D) = \dim_E D \text{ and } E \otimes_k D \simeq M_{\operatorname{ind} D}(E).$$

From now on: R complete discrete valuation ring with finite residue field, k = Frac(R) local field.

Theorem (Hasse)

The valuation on k admits a unique extension v to D, i.e. $\forall a, b \in D$:

• $v(a) = \infty \Leftrightarrow a = 0$;

• $v(a+b) \geq \min\{v(a), v(b)\};$

• v(ab) = v(a) + v(b) = v(ba);

• the value group $v(D^{\times})$ is infinite cyclic.

There is a unique maximal R-order $\Omega = \{d \in D : v(d) \ge 0\}$.

D skew field: vector space over its centre $\mathfrak{z}(D) = k$

Standing assumption: $\dim_k D < \infty$

In this case: $\dim_k D$ is a square, $\operatorname{ind}(D) := \sqrt{\dim_k D}$ index of D

If $E \subseteq D$ is a maximal subfield, then:

$$[E:k] = \operatorname{ind}(D) = \dim_E D \text{ and } E \otimes_k D \simeq M_{\operatorname{ind} D}(E).$$

From now on: R complete discrete valuation ring with finite residue field, k = Frac(R) local field.

Theorem (Hasse)

The valuation on k admits a unique extension v to D, i.e. $\forall a, b \in D$:

•
$$v(a) = \infty \Leftrightarrow a = 0$$
;

•
$$v(a+b) \geq \min\{v(a), v(b)\};$$

•
$$v(ab) = v(a) + v(b) = v(ba);$$

• the value group
$$v(D^{\times})$$
 is infinite cyclic.

There is a unique maximal R-order $\Omega = \{d \in D : v(d) \geq 0\}$.

This is the integral closure of R in D.

k local, D/k skew field, v extended valuation, Ω unique maximal order

k local, D/k skew field, v extended valuation, Ω unique maximal order

Ramification index $e(D/k) := [v(D^{\times}) : v(k^{\times})]$, so $v(D^{\times}) = e^{-1}\mathbb{Z}$

k local, D/k skew field, v extended valuation, Ω unique maximal order

Ramification index $e(D/k) := [v(D^{\times}) : v(k^{\times})]$, so $v(D^{\times}) = e^{-1}\mathbb{Z}$

Uniformiser $\pi_D \in \Omega$ of minimal positive valuation, so $v(\pi_D) = e^{-1}$ $\forall a \in D^{\times} \ \exists a', a'' \in \Omega^{\times} \colon \ a = \pi_D^{v(a)/e} a' = a'' \pi_D^{v(a)/e}$, but a' and a'' may differ

k local, D/k skew field, v extended valuation, Ω unique maximal order

Ramification index $e(D/k) := [v(D^{\times}) : v(k^{\times})]$, so $v(D^{\times}) = e^{-1}\mathbb{Z}$

Uniformiser $\pi_D \in \Omega$ of minimal positive valuation, so $v(\pi_D) = e^{-1}$ $\forall a \in D^{\times} \exists a', a'' \in \Omega^{\times}$: $a = \pi_D^{v(a)/e} a' = a'' \pi_D^{v(a)/e}$, but a' and a'' may differ

Every one-sided ideal of Ω is two-sided and a power of $\pi_D\Omega$ Inertia degree $f(D/k) := \dim_{\overline{L}} \overline{D}$ where $\overline{D} = \Omega/\pi_D\Omega$, \overline{k} residue field

k local, D/k skew field, v extended valuation, Ω unique maximal order

Ramification index $e(D/k) := [v(D^{\times}) : v(k^{\times})]$, so $v(D^{\times}) = e^{-1}\mathbb{Z}$

Uniformiser $\pi_D \in \Omega$ of minimal positive valuation, so $v(\pi_D) = e^{-1}$ $\forall a \in D^{\times} \exists a', a'' \in \Omega^{\times}$: $a = \pi_D^{v(a)/e} a' = a'' \pi_D^{v(a)/e}$, but a' and a'' may differ

Every one-sided ideal of Ω is two-sided and a power of $\pi_D\Omega$ Inertia degree $f(D/k) := \dim_{\overline{k}} \overline{D}$ where $\overline{D} = \Omega/\pi_D\Omega$, \overline{k} residue field

Fact: e(D/k) = f(D/k) = ind D, and D is v-adically complete

k local, D/k skew field, v extended valuation, Ω unique maximal order

Ramification index $e(D/k) := [v(D^{\times}) : v(k^{\times})]$, so $v(D^{\times}) = e^{-1}\mathbb{Z}$

Uniformiser $\pi_D \in \Omega$ of minimal positive valuation, so $v(\pi_D) = e^{-1}$ $\forall a \in D^{\times} \exists a', a'' \in \Omega^{\times}$: $a = \pi_D^{v(a)/e} a' = a'' \pi_D^{v(a)/e}$, but a' and a'' may differ

Every one-sided ideal of Ω is two-sided and a power of $\pi_D\Omega$ Inertia degree $f(D/k) := \dim_{\overline{k}} \overline{D}$ where $\overline{D} = \Omega/\pi_D\Omega$, \overline{k} residue field

Fact: e(D/k) = f(D/k) = ind D, and D is v-adically complete

Idea: local field extension = unramified followed by totally ramified

k local, D/k skew field, v extended valuation, Ω unique maximal order

Ramification index
$$e(D/k) := [v(D^{\times}) : v(k^{\times})]$$
, so $v(D^{\times}) = e^{-1}\mathbb{Z}$

Uniformiser $\pi_D \in \Omega$ of minimal positive valuation, so $v(\pi_D) = e^{-1}$ $\forall a \in D^{\times} \exists a', a'' \in \Omega^{\times}$: $a = \pi_D^{v(a)/e} a' = a'' \pi_D^{v(a)/e}$, but a' and a'' may differ

Every one-sided ideal of Ω is two-sided and a power of $\pi_D\Omega$ Inertia degree $f(D/k) := \dim_{\overline{k}} \overline{D}$ where $\overline{D} = \Omega/\pi_D\Omega$, \overline{k} residue field

Fact: e(D/k) = f(D/k) = ind D, and D is v-adically complete

 $\textbf{Idea:} \ \mathsf{local} \ \mathsf{field} \ \mathsf{extension} = \mathsf{unramified} \ \mathsf{followed} \ \mathsf{by} \ \mathsf{totally} \ \mathsf{ramified}$

Fact $\Rightarrow \overline{D} = \overline{k}(\overline{\omega})$ where $\overline{\omega}$ primitive $(q^{\mathsf{ind}\,D} - 1)$ th root of unity, $q = \#\overline{k}$

k local, D/k skew field, v extended valuation, Ω unique maximal order

Ramification index
$$e(D/k) := [v(D^{\times}) : v(k^{\times})]$$
, so $v(D^{\times}) = e^{-1}\mathbb{Z}$

Uniformiser $\pi_D \in \Omega$ of minimal positive valuation, so $v(\pi_D) = e^{-1}$ $\forall a \in D^{\times} \exists a', a'' \in \Omega^{\times}$: $a = \pi_D^{v(a)/e} a' = a'' \pi_D^{v(a)/e}$, but a' and a'' may differ

Every one-sided ideal of Ω is two-sided and a power of $\pi_D\Omega$ Inertia degree $f(D/k) := \dim_{\overline{k}} \overline{D}$ where $\overline{D} = \Omega/\pi_D\Omega$, \overline{k} residue field

Fact: e(D/k) = f(D/k) = ind D, and D is v-adically complete

 $\textbf{Idea:} \ \mathsf{local} \ \mathsf{field} \ \mathsf{extension} = \mathsf{unramified} \ \mathsf{followed} \ \mathsf{by} \ \mathsf{totally} \ \mathsf{ramified}$

Fact $\Rightarrow \overline{D} = \overline{k}(\overline{\omega})$ where $\overline{\omega}$ primitive $(q^{\mathsf{ind}\,D} - 1)$ th root of unity, $q = \#\overline{k}$

Inertia subfield $W:=k(\omega)$, where $\omega\in D$ is a lift of $\overline{\omega}$ W/k is unramified, and W is a maximal subfield of D

Every one-sided ideal of Ω is two-sided and a power of $\pi_D\Omega$

k local, D/k skew field, v extended valuation, Ω unique maximal order

Ramification index $e(D/k) := [v(D^{\times}) : v(k^{\times})]$, so $v(D^{\times}) = e^{-1}\mathbb{Z}$

Uniformiser $\pi_D \in \Omega$ of minimal positive valuation, so $v(\pi_D) = e^{-1}$ $\forall a \in D^{\times} \exists a', a'' \in \Omega^{\times}$: $a = \pi_D^{v(a)/e} a' = a'' \pi_D^{v(a)/e}$, but a' and a'' may differ

Inertia degree $f(D/k) := \dim_{\overline{k}} \overline{D}$ where $\overline{D} = \Omega/\pi_D\Omega$, \overline{k} residue field

Fact: $e(D/k) = f(D/k) = \operatorname{ind} D$, and D is v-adically complete

Idea: local field extension = unramified followed by totally ramified Fact $\Rightarrow \overline{D} = \overline{k}(\overline{\omega})$ where $\overline{\omega}$ primitive $(q^{\operatorname{ind} D} - 1)$ th root of unity, $q = \#\overline{k}$

Inertia subfield $W:=k(\omega)$, where $\omega\in D$ is a lift of $\overline{\omega}$ W/k is unramified, and W is a maximal subfield of D

Note: W is unique only up to conjugacy. There are infinitely many ω !

Explicit description of skew fields over local fields

 $k=\operatorname{Frac}(R)$ local, D/k skew field, v extended valuation Ω unique maximal order, $W=k(\omega)$ inertia subfield, $q=\#\overline{k}$ Let π be a uniformiser of R.

Explicit description of skew fields over local fields

 $k = \operatorname{Frac}(R)$ local, D/k skew field, v extended valuation Ω unique maximal order, $W = k(\omega)$ inertia subfield, $q = \#\overline{k}$

Let π be a uniformiser of R.

Theorem (Hasse)

There exists a uniformiser $\pi_D \in D$ and $1 \le r \le \text{ind } D$ such that

$$\pi_D^{\operatorname{ind} D} = \pi, \quad \pi_D \omega \pi_D^{-1} = \omega^{q^r}, \quad \gcd(r, \operatorname{ind} D) = 1, \quad D = \bigoplus_{i=1}^{\operatorname{ind} D-1} k(\omega) \pi_D^i.$$

Explicit description of skew fields over local fields

 $k=\operatorname{Frac}(R)$ local, D/k skew field, v extended valuation Ω unique maximal order, $W=k(\omega)$ inertia subfield, $q=\#\overline{k}$

Let π be a uniformiser of R.

Theorem (Hasse)

There exists a uniformiser $\pi_D \in D$ and $1 \le r \le \text{ind } D$ such that

$$\pi_D^{\operatorname{ind} D} = \pi, \quad \pi_D \omega \pi_D^{-1} = \omega^{q^r}, \quad \gcd(r, \operatorname{ind} D) = 1, \quad D = \bigoplus_{i=0}^{\operatorname{ind} D-1} k(\omega) \pi_D^i.$$

Conversely, for any given k and $1 \le r \le n$ coprime, there exists D with n = ind D as above.

Note: r/n is the Hasse invariant of D

Explicit description of skew fields over local fields

 $k=\operatorname{Frac}(R)$ local, D/k skew field, v extended valuation Ω unique maximal order, $W=k(\omega)$ inertia subfield, $q=\#\overline{k}$

Let π be a uniformiser of R.

Theorem (Hasse)

There exists a uniformiser $\pi_D \in D$ and $1 \le r \le \text{ind } D$ such that

$$\pi_D^{\operatorname{ind} D} = \pi, \quad \pi_D \omega \pi_D^{-1} = \omega^{q^r}, \quad \gcd(r, \operatorname{ind} D) = 1, \quad D = \bigoplus_{i=0}^{\operatorname{ind} D-1} k(\omega) \pi_D^i.$$

Conversely, for any given k and $1 \le r \le n$ coprime, there exists D with n = ind D as above.

Note: r/n is the Hasse invariant of D

As part of the proof, one constructs an explicit splitting isomorphism:

$$D \hookrightarrow k(\omega) \otimes_k D \xrightarrow{\sim} M_{\text{ind } D}(k(\omega))$$

 $k={\rm Frac}(R)$ local, D/k skew field, $\Omega\subset D$ unique maximal R-order, π_D uniformiser as in the Theorem above

 $k=\operatorname{Frac}(R)$ local, D/k skew field, $\Omega\subset D$ unique maximal R-order, π_D uniformiser as in the Theorem above

What are the (maximal) R-orders in $M_n(D)$?

 $k = \operatorname{Frac}(R)$ local, D/k skew field, $\Omega \subset D$ unique maximal R-order, π_D uniformiser as in the Theorem above

What are the (maximal) R-orders in $M_n(D)$?

These matrix rings show up in the Wedderburn decomposition of $\mathbb{Q}_p[H]$ for H a finite group.

 $k=\operatorname{Frac}(R)$ local, D/k skew field, $\Omega\subset D$ unique maximal R-order, π_D uniformiser as in the Theorem above

What are the (maximal) R-orders in $M_n(D)$?

These matrix rings show up in the Wedderburn decomposition of $\mathbb{Q}_p[H]$ for H a finite group.

Proposition

The maximal R-orders in $M_n(D)$ are precisely the $uM_n(\Omega)u^{-1}$ with $u \in GL_n(D)$.

Two-dimensional case: Iwasawa algebras

General theory

 \mathcal{R} complete regular local ring of dimension 2 — later: $\mathcal{R} = \mathbb{Z}_p[[T]]$ \mathcal{D} skew field with centre $\mathfrak{z}(\mathcal{D}) = \mathbb{A} = \operatorname{Frac}(\mathcal{R})$

General theory

 $\mathcal R$ complete regular local ring of dimension 2 — later: $\mathcal R = \mathbb Z_p[[T]]$ $\mathcal D$ skew field with centre $\mathfrak z(\mathcal D) = k = \operatorname{Frac}(\mathcal R)$

Theorem (Ramras 1969)

- ullet Maximal ${\mathcal R}$ -orders ${\mathcal R}$ in ${\mathcal D}$ are unique only up to conjugation.
- Maximal \mathcal{R} -orders in $M_n(\mathcal{D})$ are also unique up to conjugation.
- \bullet Any ${\mathfrak Q}$ is a local ring, i.e. it has a unique two-sided maximal ideal ${\mathfrak m}_{{\mathfrak Q}}$

Skew fields occurring in $\mathcal{Q}(\mathcal{G}) = \mathsf{Quot}(\Lambda(\mathcal{G}))$ are of the following form.

Skew fields occurring in $\mathcal{Q}(\mathcal{G}) = \mathsf{Quot}(\Lambda(\mathcal{G}))$ are of the following form.

 k/\mathbb{Q}_p finite, K/k cyclic Galois p-extension, $\tau \in \operatorname{Gal}(K/k)$ generator D/K skew field such that $\operatorname{ind}(D) \mid p-1$, maximal order Ω , inertia field W

Skew fields occurring in $\mathcal{Q}(\mathcal{G}) = \mathsf{Quot}(\Lambda(\mathcal{G}))$ are of the following form.

$$k/\mathbb{Q}_p$$
 finite, K/k cyclic Galois p -extension, $\tau \in \operatorname{Gal}(K/k)$ generator D/K skew field such that $\operatorname{ind}(D) \mid p-1$, maximal order Ω , inertia field W

$$\mathcal{R} = \mathcal{O}_k[[(1+X)^{[K:k]}-1]] = \mathcal{O}_k[[T]], \, \mathbf{k} = \operatorname{Frac}(\mathcal{R})$$

Skew fields occurring in $\mathcal{Q}(\mathcal{G}) = \mathsf{Quot}(\Lambda(\mathcal{G}))$ are of the following form.

$$k/\mathbb{Q}_p$$
 finite, K/k cyclic Galois p -extension, $\tau \in \operatorname{Gal}(K/k)$ generator D/K skew field such that $\operatorname{ind}(D) \mid p-1$, maximal order Ω , inertia field W

$$\mathcal{R} = \mathcal{O}_k[[(1+X)^{[K:k]}-1]] = \mathcal{O}_k[[T]], \, \mathbf{k} = \operatorname{Frac}(\mathcal{R})$$

$$\mathcal{R}:=\Omega[[X; au, au-1]]$$
 skew power series ring, with additive group $\Omega[[X]]$, multiplication rule: $Xd= au(d)X+ au(d)-d\ (orall d\in\Omega)$

General theory: Venjakob (2003), Schneider–Venjakob (2006)

Skew fields occurring in $\mathcal{Q}(\mathcal{G}) = \mathsf{Quot}(\Lambda(\mathcal{G}))$ are of the following form.

$$k/\mathbb{Q}_p$$
 finite, K/k cyclic Galois p -extension, $\tau \in \operatorname{Gal}(K/k)$ generator D/K skew field such that $\operatorname{ind}(D) \mid p-1$, maximal order Ω , inertia field W

$$\mathcal{R} = \mathcal{O}_k[[(1+X)^{[K:k]}-1]] = \mathcal{O}_k[[T]], \, \mathbf{k} = \operatorname{Frac}(\mathcal{R})$$

$$\mathcal{R}:=\Omega[[X; au, au-1]]$$
 skew power series ring, with additive group $\Omega[[X]]$, multiplication rule: $Xd= au(d)X+ au(d)-d\ (\forall d\in\Omega)$

General theory: Venjakob (2003), Schneider-Venjakob (2006)

$$\mathcal{D}:=\mathsf{Quot}(\mathcal{Q})$$
 skew field, \mathcal{Q} a maximal $\mathcal{R}\text{-order}$, $\mathbf{\ell}=\mathfrak{z}(\mathcal{D})$ centre

Skew fields occurring in $\mathcal{Q}(\mathcal{G}) = \mathsf{Quot}(\Lambda(\mathcal{G}))$ are of the following form.

$$k/\mathbb{Q}_p$$
 finite, K/k cyclic Galois p -extension, $\tau \in \operatorname{Gal}(K/k)$ generator D/K skew field such that $\operatorname{ind}(D) \mid p-1$, maximal order Ω , inertia field W

$$\mathcal{R} = \mathcal{O}_k[[(1+X)^{[K:k]}-1]] = \mathcal{O}_k[[T]], \, \mathbf{k} = \operatorname{Frac}(\mathcal{R})$$

$$\mathcal{R} := \Omega[[X; \tau, \tau - 1]]$$
 skew power series ring, with additive group $\Omega[[X]]$, multiplication rule: $Xd = \tau(d)X + \tau(d) - d \ (\forall d \in \Omega)$

General theory: Venjakob (2003), Schneider-Venjakob (2006)

$$\mathcal{D} := \operatorname{Quot}(\mathcal{X})$$
 skew field, \mathcal{X} a maximal \mathcal{R} -order, $\mathcal{K} = \mathfrak{z}(\mathcal{D})$ centre $\mathcal{W} := \operatorname{Quot}(\mathcal{O}_W[[T]])$ maximal subfield

 \Rightarrow maximal \mathscr{R} -orders in $M_n(\mathfrak{D})$ are of the form $uM_n(\mathfrak{D})u^{-1}$ for $u\in\mathsf{GL}_n(\mathfrak{D})$

Skew fields occurring in $\mathcal{Q}(\mathcal{G}) = \mathsf{Quot}(\Lambda(\mathcal{G}))$ are of the following form.

$$k/\mathbb{Q}_p$$
 finite, K/k cyclic Galois p -extension, $\tau \in \operatorname{Gal}(K/k)$ generator D/K skew field such that $\operatorname{ind}(D) \mid p-1$, maximal order Ω , inertia field W

$$\mathcal{R} = \mathcal{O}_k[[(1+X)^{[K:k]}-1]] = \mathcal{O}_k[[T]], \, \mathbf{k} = \operatorname{Frac}(\mathcal{R})$$

$$\mathcal{R}:=\Omega[[X; au, au-1]]$$
 skew power series ring, with additive group $\Omega[[X]]$, multiplication rule: $Xd= au(d)X+ au(d)-d\ (\forall d\in\Omega)$

General theory: Venjakob (2003), Schneider–Venjakob (2006)

$$\mathcal{D}:=\operatorname{Quot}(\mathcal{R})$$
 skew field, \mathcal{R} a maximal \mathcal{R} -order, $\mathcal{R}=\mathfrak{z}(\mathcal{D})$ centre $\mathcal{W}:=\operatorname{Quot}(\mathcal{O}_W[[T]])$ maximal subfield

$$\Rightarrow$$
 maximal ${\mathcal R}$ -orders in $M_n({\mathcal D})$ are of the form $uM_n({\mathcal R})u^{-1}$ for $u\in {\mathsf {GL}}_n({\mathcal D})$

$$[K:k] \operatorname{ind}(D) - 1$$

$$\mathscr{D} = \bigoplus \mathcal{W}(\pi_D X)^i; \pi_D X \text{ acts as } r\text{th power of Frobenius times } \tau$$

R noetherian integrally closed integral domain, $K = \operatorname{Frac}(R)$ of char 0,

A finite dimensional K-algebra

R noetherian integrally closed integral domain, $K = \operatorname{Frac}(R)$ of char 0,

A finite dimensional K-algebra

Definition

An R-order M in A is called

• graduated if $\exists e_1, \dots, e_d \in M$ orthogonal $(e_i e_j = \delta_{ij} e_i)$ indecomposable idempotents $(e_i^2 = e_i)$: $\sum_{i=1}^d e_i = 1$ and $e_i M e_i \subset e_i A e_i$ max. R-order;

R noetherian integrally closed integral domain, K = Frac(R) of char 0,

A finite dimensional K-algebra

Definition

- graduated if $\exists e_1, \dots, e_d \in M$ orthogonal $(e_i e_j = \delta_{ij} e_i)$ indecomposable idempotents $(e_i^2 = e_i)$: $\sum_{i=1}^d e_i = 1$ and $e_i M e_i \subset e_i A e_i$ max. R-order;
- extremal if $\forall \widetilde{M} \supseteq M$ overorder: $Jac(\widetilde{M}) \supseteq Jac(M)$ implies $\widetilde{M} = M$;

R noetherian integrally closed integral domain, $K = \operatorname{Frac}(R)$ of char 0,

A finite dimensional K-algebra

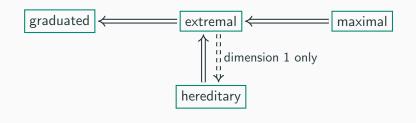
Definition

- graduated if $\exists e_1, \dots, e_d \in M$ orthogonal $(e_i e_j = \delta_{ij} e_i)$ indecomposable idempotents $(e_i^2 = e_i)$: $\sum_{i=1}^d e_i = 1$ and $e_i M e_i \subset e_i A e_i$ max. R-order;
- extremal if $\forall \widetilde{M} \supseteq M$ overorder: $Jac(\widetilde{M}) \supseteq Jac(M)$ implies $\widetilde{M} = M$;
- hereditary if every left ideal of *M* is a projective *M*-module.

R noetherian integrally closed integral domain, K = Frac(R) of char 0, A finite dimensional K-algebra

Definition

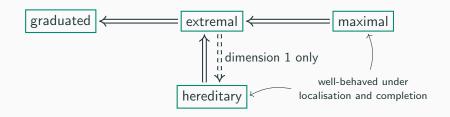
- graduated if $\exists e_1, \dots, e_d \in M$ orthogonal $(e_i e_j = \delta_{ij} e_i)$ indecomposable idempotents $(e_i^2 = e_i)$: $\sum_{i=1}^d e_i = 1$ and $e_i M e_i \subset e_i A e_i$ max. R-order;
- extremal if $\forall \widetilde{M} \supseteq M$ overorder: $Jac(\widetilde{M}) \supseteq Jac(M)$ implies $\widetilde{M} = M$;
- hereditary if every left ideal of *M* is a projective *M*-module.



R noetherian integrally closed integral domain, K = Frac(R) of char 0, A finite dimensional K-algebra

Definition

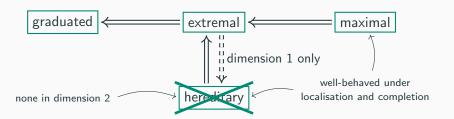
- graduated if $\exists e_1, \dots, e_d \in M$ orthogonal $(e_i e_j = \delta_{ij} e_i)$ indecomposable idempotents $(e_i^2 = e_i)$: $\sum_{i=1}^d e_i = 1$ and $e_i M e_i \subset e_i A e_i$ max. R-order;
- extremal if $\forall \widetilde{M} \supseteq M$ overorder: $Jac(\widetilde{M}) \supseteq Jac(M)$ implies $\widetilde{M} = M$;
- hereditary if every left ideal of *M* is a projective *M*-module.



R noetherian integrally closed integral domain, K = Frac(R) of char 0, A finite dimensional K-algebra

Definition

- graduated if $\exists e_1, \dots, e_d \in M$ orthogonal $(e_i e_j = \delta_{ij} e_i)$ indecomposable idempotents $(e_i^2 = e_i)$: $\sum_{i=1}^d e_i = 1$ and $e_i M e_i \subset e_i A e_i$ max. R-order;
- extremal if $\forall \widetilde{M} \supseteq M$ overorder: $Jac(\widetilde{M}) \supseteq Jac(M)$ implies $\widetilde{M} = M$;
- hereditary if every left ideal of *M* is a projective *M*-module.



 $\mathcal R$ complete regular local ring of dimension ≤ 2 , $\mathcal R = \operatorname{Frac}(\mathcal R)$,

 ${\mathcal D}$ skew field over ${\mathcal R}$, ${\mathcal R}$ a maximal ${\mathcal R}$ -order in ${\mathcal D}$, ${\mathfrak m}_{\mathcal R}$ unique maximal ideal

 \mathcal{R} complete regular local ring of dimension ≤ 2 , $\mathcal{R} = \operatorname{Frac}(\mathcal{R})$, \mathcal{D} skew field over \mathcal{R} , \mathcal{R} a maximal \mathcal{R} -order in \mathcal{D} , $\mathfrak{m}_{\mathcal{R}}$ unique maximal ideal

Theorem (Plesken 1977, F. 2025)

Let $\mathfrak O$ be a graduated R-order in $M_n(\mathfrak D)$. Then there exist:

 \mathcal{R} complete regular local ring of dimension ≤ 2 , $\mathcal{R} = \operatorname{Frac}(\mathcal{R})$, \mathcal{D} skew field over \mathcal{R} , \mathcal{R} a maximal \mathcal{R} -order in \mathcal{D} , $\mathfrak{m}_{\mathcal{R}}$ unique maximal ideal

Theorem (Dischar 1977, F. 2025)

Theorem (Plesken 1977, F. 2025)

Let Θ be a graduated R-order in $M_n(\mathfrak{D})$. Then there exist:

• $n_1 + \ldots + n_t = n$ partition of n into positive integers,

 \mathcal{R} complete regular local ring of dimension ≤ 2 , $\mathcal{R} = \operatorname{Frac}(\mathcal{R})$, \mathcal{D} skew field over \mathcal{R} , \mathcal{R} a maximal \mathcal{R} -order in \mathcal{D} , $\mathfrak{m}_{\mathcal{R}}$ unique maximal ideal

Theorem (Plesken 1977, F. 2025)

Let $\mathfrak O$ be a graduated R-order in $M_n(\mathfrak O)$. Then there exist:

- $n_1 + \ldots + n_t = n$ partition of n into positive integers,
- $\mathcal{I}_{ij} \subseteq \mathcal{N}$ two-sided nonzero ideals for $1 \leq i, j \leq t$, satisfying $\mathcal{I}_{ii} = \mathcal{N}$, $\mathcal{I}_{ij}\mathcal{I}_{jk} \subseteq \mathcal{I}_{ik}$, $\mathcal{I}_{ij}\mathcal{I}_{ji} \subsetneq \mathcal{N}$,

 ${\mathcal R}$ complete regular local ring of dimension \leq 2, ${\mathbf k}={\sf Frac}({\mathcal R})$,

 ${\mathcal D}$ skew field over ${\mathcal K}$, ${\mathcal N}$ a maximal ${\mathcal R}$ -order in ${\mathcal D}$, ${\mathfrak m}_{\mathcal N}$ unique maximal ideal

Theorem (Plesken 1977, F. 2025)

Let $\mathfrak O$ be a graduated R-order in $M_n(\mathfrak O)$. Then there exist:

- $n_1 + \ldots + n_t = n$ partition of n into positive integers,
- $\mathcal{I}_{ij} \subseteq \mathcal{R}$ two-sided nonzero ideals for $1 \leq i, j \leq t$, satisfying $\mathcal{I}_{ii} = \mathcal{R}$, $\mathcal{I}_{ij}\mathcal{I}_{jk} \subseteq \mathcal{I}_{ik}$, $\mathcal{I}_{ij}\mathcal{I}_{ji} \subsetneq \mathcal{R}$,
- $u \in \mathsf{GL}_n(\mathfrak{D})$

s.t. $u\Theta u^{-1}$ consists of block matrices $A=(A_{ij})_{ij}$ with $A_{ij}\in M_{n_i\times n_j}(\mathcal{I}_{ij})$.

 \mathscr{R} complete regular local ring of dimension ≤ 2 , $\mathscr{R} = \operatorname{Frac}(\mathscr{R})$,

 ${\mathcal D}$ skew field over ${\mathcal K}$, ${\mathcal R}$ a maximal ${\mathcal R}$ -order in ${\mathcal D}$, ${\mathfrak m}_{\mathcal R}$ unique maximal ideal

Theorem (Plesken 1977, F. 2025)

Let $\mathfrak O$ be a graduated R-order in $M_n(\mathfrak O)$. Then there exist:

- $n_1 + \ldots + n_t = n$ partition of n into positive integers,
- $\mathcal{I}_{ij} \subseteq \mathcal{R}$ two-sided nonzero ideals for $1 \leq i, j \leq t$, satisfying $\mathcal{I}_{ii} = \mathcal{R}$, $\mathcal{I}_{ij}\mathcal{I}_{jk} \subseteq \mathcal{I}_{ik}$, $\mathcal{I}_{ij}\mathcal{I}_{ji} \subsetneq \mathcal{R}$,
- $u \in \mathsf{GL}_n(\mathfrak{D})$

s.t. $u\Theta u^{-1}$ consists of block matrices $A=(A_{ij})_{ij}$ with $A_{ij}\in M_{n_i\times n_j}(\mathcal{I}_{ij})$.

If Θ is extremal, then $\mathcal{I}_{ij} = \mathcal{R}$ for $i \geq j$ and $\mathcal{I}_{ij} = \mathfrak{m}_{\mathcal{R}}$ for i < j.

 ${\mathcal R} \text{ complete regular local ring of dimension} \leq 2, \, {\mathbf /\!\!\! k} = {\rm Frac}({\mathcal R}),$

 ${\mathcal D}$ skew field over ${\it k}$, ${\it N}$ a maximal ${\it R}$ -order in ${\it D}$, ${\it m}_{\it N}$ unique maximal ideal

Theorem (Plesken 1977, F. 2025)

Let $\mathfrak O$ be a graduated R-order in $M_n(\mathfrak D)$. Then there exist:

- $n_1 + \ldots + n_t = n$ partition of n into positive integers,
- $\mathcal{I}_{ij} \subseteq \mathcal{R}$ two-sided nonzero ideals for $1 \leq i, j \leq t$, satisfying $\mathcal{I}_{ii} = \mathcal{R}$, $\mathcal{I}_{ij}\mathcal{I}_{jk} \subseteq \mathcal{I}_{ik}$, $\mathcal{I}_{ij}\mathcal{I}_{ji} \subsetneq \mathcal{R}$,
- $u \in \mathsf{GL}_n(\mathfrak{D})$
- s.t. uOu^{-1} consists of block matrices $A = (A_{ij})_{ij}$ with $A_{ij} \in M_{n_i \times n_j}(\mathcal{I}_{ij})$.

If Θ is extremal, then $\mathcal{I}_{ij} = \mathcal{N}$ for $i \geq j$ and $\mathcal{I}_{ij} = \mathfrak{m}_{\mathcal{N}}$ for i < j.

Note: the data in the Theorem are not uniquely determined by ${\cal N}$.

$$\mathcal{G} = H \rtimes \Gamma \text{ with } H \text{ finite, } \Gamma \simeq \mathbb{Z}_p, \ \Lambda(\mathcal{G}) = \mathbb{Z}_p[\![\mathcal{G}]\!], \ \mathcal{Q}(\mathcal{G}) = \mathsf{Quot}(\Lambda(\mathcal{G}))$$

$$\mathcal{G} = H \rtimes \Gamma$$
 with H finite, $\Gamma \simeq \mathbb{Z}_p$, $\Lambda(\mathcal{G}) = \mathbb{Z}_p[\![\mathcal{G}]\!]$, $\mathcal{Q}(\mathcal{G}) = \mathsf{Quot}(\Lambda(\mathcal{G}))$

Recall: $\mathcal{Q}(\mathcal{G})$ is a semisimple $\Lambda(\Gamma_0)$ -algebra, where $\Gamma_0 = \Gamma^{p^n} \leq \mathcal{G}$ central

$$\mathcal{G} = H \rtimes \Gamma$$
 with H finite, $\Gamma \simeq \mathbb{Z}_p$, $\Lambda(\mathcal{G}) = \mathbb{Z}_p[\![\mathcal{G}]\!]$, $\mathcal{Q}(\mathcal{G}) = \mathsf{Quot}(\Lambda(\mathcal{G}))$

Recall: $\mathcal{Q}(\mathcal{G})$ is a semisimple $\Lambda(\Gamma_0)$ -algebra, where $\Gamma_0 = \Gamma^{p^n} \leq \mathcal{G}$ central

Recall:
$$K_1(\mathcal{Q}(\mathcal{G})) = \left(\varinjlim_n \mathsf{GL}_n(\mathcal{Q}(\mathcal{G}))\right)^{\mathsf{ab}}$$
 Whitehead group

$$\mathcal{G} = H \rtimes \Gamma \text{ with } H \text{ finite, } \Gamma \simeq \mathbb{Z}_p, \ \Lambda(\mathcal{G}) = \mathbb{Z}_p[\![\mathcal{G}]\!], \ \mathcal{Q}(\mathcal{G}) = \mathsf{Quot}(\Lambda(\mathcal{G}))$$

Recall: $\mathcal{Q}(\mathcal{G})$ is a semisimple $\Lambda(\Gamma_0)$ -algebra, where $\Gamma_0 = \Gamma^{p^n} \leq \mathcal{G}$ central

Recall:
$$K_1(\mathcal{Q}(\mathcal{G})) = \left(\varinjlim_n \operatorname{GL}_n(\mathcal{Q}(\mathcal{G}))\right)^{\operatorname{ab}}$$
 Whitehead group
$$\mathfrak{Z}(\mathcal{Q}(\mathcal{G}))^{\times} \xleftarrow{\operatorname{nr}} K_1(\mathcal{Q}(\mathcal{G})) \xrightarrow{\partial} K_0(\Lambda(\mathcal{G}), \mathcal{Q}(\mathcal{G}))$$
 analytic $\Phi \longleftarrow \exists \zeta \longmapsto [C^{\bullet}]$ algebraic

Theorem (equivariant *p*-adic Artin conjecture)

Assume the equivariant Iwasawa main conjecture.

Let Θ be a graduated $\Lambda(\Gamma_0)$ -order in $\mathcal{Q}(\mathcal{G})$ containing $\Lambda(\mathcal{G})$. Then ζ is in the image of the map $\Theta \cap \mathcal{Q}(\mathcal{G})^{\times} \to K_1(\mathcal{Q}(\mathcal{G})), x \mapsto [(x)]$.

The proof builds on the explicit description of the skew fields in $\mathcal{Q}(\mathcal{G})$ as well as Nichifor–Palvannan's method (2019).