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0 Introduction: 22+ ¢’ =n

0.1 Algebraic method

Gauss integers, Eudlidean notm, the ring of Gauss integers is a PID, primitive element, unique factori-
sation for elements and ideals.

Prime ideals of the Gauss integers: case work based on pNZ = (p) and p mod 4.

0.2 Analytic method

r(n), Cr(s), ¢(5), L(x, ), (z %) (Z é) = Z (de ad) %, multiplicative sequence, summation

of a multiplicative sequence is multiplicative

1 Number fields and algebraic integers

1.1 Algebraic integers

integral element (3 equivalent properties), integral elements form a subring, transitivity of integral ex-
tension, integral closure, PIDs are integrally closed, integrality over Z, Ok for quadratic number fields

1.2 Discriminant and integral basis

trace, norm, trace and norm with coefficients of the minimal polynomial and with embeddings into an
algebraically closed field for separable extensions

trace is non-degenerate for separable extensions (PO), L = LY = Homg (L, K), (e,) dual basis to (o)

1.2.1 Application to number fields

discriminant, disc # 0 < basis, disc(AC) = disc(A) det® C, disc = det? 0i(e;), discriminant of a power
base, sgndisc = (—1)™

O is a free Z-module, integral basis, disck

equivalent condition for an integral basis with discriminant, Ox = Z[o] if the minimal polynomial can

be translated to an Eistenstein polynomial



1.3 Cyclotomic fields

Gal(Q(¢v)/Q) = (Z/NZ)*, [Q(¢n) : Q] = p(N), Q(¢n+a) = QUEN)Q(Crr), Q) NQCar) = Q.
dise(1,Cn, ..., CH0 07 | N, Ogony = Z[Gonl-

For KNL=Q, d= ged(disck,discr): OxOr € Oy, C %OKOL.

Ogen) = Z[Sn], discg(c v) = :i:ppﬂ_l(pN"‘N_f'), the general formula follows from discxf, = disc[;?ﬂ] discf{:Q]
(holds if ged(discg,diser) = 1) .

2 Dedekind domains

noetherian ring, Dedekind domain, PID = Dedekind, A Dedekind = S~' A Dedekind

integral closure in a field extension is Dedekind, Oy is Dedekind, if A C B is integral then A field < B
field ' ;

fractional ideal

Dedekind domains have unique facorisation of nonzero ideals. Lemma 1: every nonzero ideal of a noethe-
rian ring contains a product of nonzero prime ideals. Lemma 2: p € SpecA \ (0) = p~! is a fractional
ideal and p~'p= A

Dedekind = (PID « UFD), unique factorisation of factorial ideals in Dedekind domains, vy, properties
Of 'Up

I factorial, p prime = I/Ip is a 1-dim A/p-vector space
Div(A), Prin(A), Cla '

Chinese Remainder Theorem for rings (for I +J = R, I'NJ = IJ) and Dedekind domains (for dis-
tinct maximal ideals), Dedekind domain with finitely many maximal ideals is PID, the localisation of a
Dedekind domain at a prime is PID

localisation of Dedekind domains: prime ideals and prime decomposition of fractional ideals

3 Extensions of Dedekind domains

K/L finite separable field extension, A Dedekind with fraction field K, B the integral closure of A in L,
peSpecA, pB =[] @F

k(Q;)/k(p) is a finite extension with degree f;, Z eifi =[L: K]
ramification index, residue degree, unramified, split, inert
Kummer’s Theorem, p Nz x(f'(a)) = B/pB = k(p)[a]

p is ramified in Q(vD) iff p | disck, p > 3 unramified prime splits iff (;) =1, for D =1 (mod 4) 2
splits iff D =1 (mod 8)

decomposition of 2, 3,5, 7in @(Vi)

p unramified < Ok /pOk is reduced < ﬁK/Q : Ok /pOx % O [pOx — [y is non-degenerate < p { discy
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3.1 Different and discriminant

norm of a fractional ideal, multiplicative, transitive, Ny q(I) = [J : IJ], Nk g is the absolute norm
different, NK/@(JK) = |dISCK [, 5M/K = ZSM/L((SL/KOM)

relative discriminant, p unramified < p t discy /g, | discy | = | disck j=] Niq(discr/x)

for a composite K1K2/Q = KiNK>: 0k, Ok, k, € 0k, k,/k,, discr, | discEf?:@] disc[,i‘;‘:@], ged(diseg, ,discy, ) =

1

1= |discy, | = | disc, |59 disc, | %@, a rational prime p is unramified in K; and K iff in K, Ko

4 Decomposition of primes in Galois extensions

action of the Galois group is transitive, Ye; =, Vf; = f, efg=n
decomposition group, |G| = g- |D(Q|p)|, D((Q)|p) = o D(Q|p)o ", inertia subgroup

1 1(QIp) — D(QIp) <= Gal(k(Q)/k(p)) — 1 exact, |D(QIp)| = ef, [1(Qlp)| = ¢

Q is the only prime above @' < Gal(L/K") C D(Q|p), e(Q'|p) = M, {primes of K’ above p} +

~ [HNI@Qlp)
{orbits of H on {Q1,...,Q4}}

Frobenius element, (%) = (L/TK) o1, (L/TK) - (344;{4) (C;;r/]ﬂ:;)z (Lg{)mnmm

N >3 o0dd or 4| N: p € Z ramifies in Q((y) < p | N, for p|N e = p»™)(p — 1)
Pt N: op(Cn) = (R, f(plp) = order of p in (Z/NZ)*, g = @(N)/f

Q(p*) is the unique quadratic subextension of Q((,), Law of Quadratic Reciprocity

5 Finiteness theorems

(full) lattice, Minkowski’s Lemma

Disc(I), Disc(I) = discx Ny q(I)?, A, for any fractional ideal I A(I) C R™ is a lattice and Vol(R"/A(I)) =
\/Disc(I) /2"

ro |
Ja € I'\ {0} s.t. |Ng/q(a)| < (E> i%\/lrsilgll\l(}'), Minkowski Bound: every ideal class has 0 <
™ n

N(a) < % (%)m V/|dx|, Clk is finite, examples: Q(v2), Qv—14)

5.1 Hermite’s Theorem

nf2 pl

|dg|/? > (%) e only Qs unramified at every prime, Hermite’s Theorem

5.2 Dirichlet’s Theorem

Wi = (O))*"™ is finite cﬁrclic, foru€ Of ueWx &Vo: K = C:|o(u)lc=1

Dirichlet’s Theorem, example: Q(v/2) hase =1+ V2

4



Lemmata: VkJuy @ |og(ur)| > 1,Vi # k : |o(ur)| < 1; A = (@i5),ai > 0,045 < O,Zaij =0=r1kd=
r—=1

6 Distribution of primes

6.1 Regulator

Regulator, example: real quadratic number field

Artin’s Theorem (PO), ¥ € Ok, 9 > 1,49%2 + 24 < |dk| then 1 is the fundamental unit of K, example:
Q(V2)
N(t), examples: Q,Q(z)

T T2 it § T2
T 2m (2m) RKht—I—O'(tl_l';n), No(t) = 2" (2m)"2 Ry
w/|dk]| wy/|dk|

Sy ={z € J | |Ngq(z)| < tN(J)}/O «— {I C Ok,I € C|N(I) < t}

N(t) PO

proof in the quadratic case

(n — 1)-Lipschitz parametrisable function; Marcus’ Lemma: B C R"™ bounded, 8B (n — 1)-Lipschitz,

A C R™ full lattice = Va > 1 #(ANaB) = %aﬂ' +0(a™1) (PO)

6.2 Infinite products
1

1. —=ip=
vergent for Re(s) > 1, ¢ has an analytic continuation to a meromorphic function on Re(s) > 0 with a

absolute convergent product, H(I + a,) abs.conv. & Zan abs.conv., Hp and ((s) are con-

simple pole at 1

S, = kt + O(t*~°) = f has an analytic continuation to a meromorphic function on Re(s) > 1 — §, with
at most a simple pole at 1 with residue &

6.3 Applications
; 1 5 el '
Dedekind zeté Cx(s) = ]:[p e Za oy converges absolutely for Res > 1
an =#{a C O | Na =n}, Z a_,; has an analytic continuation with a simple pole
5 ;

271 (27)"2 Rgh
Ck (s) has an analytic continuation with a simple pole, Res; (x(s) = M

1 1 1
~ Nl
Zp Nps Zdeg p=1 Nps 08 s

Dirichlet and natural density, w(z), ms(z)

w/|dk|

6.4 Dirichlet L-functions

character group, G = G non-canonical, < is exact, G =~ G canonical (Pontryagin duality), Zg x(g) =0

or 161, Y x(9) =0 or (G

11
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Dirichlet character, conductor, primitive character, examples on Z/8Z, Z/12Z and the Legendre symbol

L(x, s), has an analytic continuation if x # o

6.5 Factorisation of the Dedekind zeta function of abelian number fields
¢r(s) =T L0x:9)

| 971 (21)™ Ry

L) =2t Tkl
HX#XU (X ) w ldKi
2logexh 2rh
p=3, K=0Q(/p*)= L(x,1) =
Ll

Dirichlet’s theorem: p = a (mod N) have Dirichlet density 1/¢(N). Generalisation: Chebotarev density
theorem (PO), examples

6.6 Formula for L(y,1)

Gauss sums, 74(x) = X(a)7(x), 7(x)7(X) = x(=1)f, |7(x)| = Vf

L(x,s) = _Tx) Za X(a) log sin T8 or T Za X(a)a

f f 7

6.7 Class number formula for quadratic fields

xK» K < Q(¢ay|, identifying x g with x4, , properties of xa, T(xax ) = V/|dx| or iv/|dk| (PO)

Dirichlet class number formula, corollary for dy < —4 even, example: Q(+v/—56)

7 p-adic numbers

* Zy, as an inverse limit, local integral domain, @, as a fraction field, the fundamental system (a + p"Zy)

defines a topology, Zj is complete, Z C Zy, is dense
| - | absolute value, v,, @, as a completion of Q
examples for calculations in @,

valuation field, (non-}archimedean valuation, examples: @ with the standard and the p-adic valuations,

vy, k(x) with vy

additive valuation, equivalence of additive valuations

non-archimedean < bounded on Z, = # y = |z + y| = max(|z|, |y])

completion: unique, K C K dense, an embedding of normed fields extends uniquely to the completion
va.luation. ring, discrete valuation ring, normalised additive valuation, examples: Qp, k(z), C{{z}}
equivalence of non-archimedean norms < valuation rings are the same

Ok is an integrally closed local domain, mg maximal ideal, Op = m@x/(n’“), Ok DVR & Ok local
Dedekind domain

Ok has a “thick” boundary



7.1 Structure of complete discrete valuation fields

unique writing as a Laurent series

For k =Fg: (1+7"z)P € 1+ a0n@+1np)0x (1 4 772)0" € 1 47" Ok, Va € kI[a] € Ok : [a]? = [d]
Teichmiiller lift

7.2 Structure of K*

Ug separated and exhausted filtration

7.3 Hensel’s lemma

Gauss norm, primitive polynomial, Hensel’s lemma
f(ap) =0 (mod mg), f'(ap) 0 (mod my) = f(a) =0,a = ap (mod mg), example: 2 — a
|| ]| = max(|ag|, |ax|) for irreducible polynomials

norm on a vector space, equivalence of norms, any two norms are equivalent over finite dimensional vector
spaces and the space is complete

a norm extends uniquely as |z|; = |NL;K(:B)|1/“

7.4 Newton polygon

NP(f), there are exactly m; roots in K with valuation s;

f irreducible = NP(f) has only one slope, if NP(f) has only one élope and it is of the form s = ¢/n with
ged(t,n) = 1= f is irreducible, example

8 Finite extensions of complete discrete valuation fields

Oy is a free @x-module of rank [L : K], a basis over Ok reduces to a basis over k£
ramification index, residue degree, unramified and totally ramified extension
e(L|K)f(L|K) = [L : K], {a5 | i} k-basis = {a;nd ! | 4,5} form an Ok-basis of O,
Or = Ok|ry] in the totally ramified case

k'/k finite separable = 3K’/K unramified with kg = k, K’ is unique, K'/K is Galois iff k' /k is. For
L/K finite Homaig(K’, L) = Homg-aig (K, k1)

L/K finite, kz/k separable = 3!Ly C L so that Lo/K is unramified and kL, = ki, Lo contains all

unramified extensions. Example: F,
vr(a), Np/x(a), ve(Np/k(a)) = f(L|K)vL(a)
¥ dual lattice of Of, 6./ different, 9/ discriminant, behaviour for subextensions, ok = (f'(@))

Totally ramified = vz (dr/x) > e(L|K) — 1, equality in the tamely ramified case. Unramified <

vr(0r/x) =0

18
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maximal unramified and tamely ramified extensions, these are infinite Galois extensions, K" = K" .
Upos K(7R)
8.1 Galois extensions of complete discrete valuation fields

I,k inertia subgroup, G, filtration, U}, equivalent definition of G,

chark = 0 = G; = 1, Go/G cyclic finite. chark = p > 0 = G; finite group of p-power order, Go/G1
finite cyclic group of order prime to p, example: Qp(Cpn)/Qp

9 Global applications

Ostrowski’s theorem
place, | - |6, Up, |- [p; | lv % | - |w and any non-trivial norm is equivalent to one of these

weak approximation:. K — | | K,, has dense image
i ag

Lok K, = H Ly, a new proof of the fundamental equation, Trp/k(x) = Z Trr,/k (z), same
w|v wlv ko=t

for norm, example for computing a prime decomposition

9.1 Comparison of local and global Galois groups

iy induced map, iy, induces Gal(Ly/Ky) = Dyjy, I(Lw|Ky) = I, example: computing a Galois group

9.2 Product formula

]___[v ||y = 1, lemma: | Ng/g(z)], = thu ]

10 Adeéles and idéles

10.1 Topological groups

topological group, examples, T2 & T1 & e is closed

locally compact topological group, examples

%ix_nX,: = HX,: compact

10.1.1 Subgroups

H < G = H is a topological group

every locally closed subgroup is closed, every locally compact of a T2 group is closed, any discrete

subgroup is closed

in locally compact groups: a subgroup is closed < locally compact



10.1.2 Quotients

the quotient map is open, G > H = G/H is a topological group and the quotient map is continuous

H C G closed & G/H T2, H C G open < G/H discrete, G locally compact and H closed = G/H
locally compact, example

f : G - H continuous map induces f’ : G/ker f — H continuous bijection, if f is open then f’ is a
homeomorphism, example

10.2 Adeéles

restricted product, V, V., V}

G, locally compact = H; Gy locally compact

A g adele ring locally compact, K, — Ag closed

'K — Ak (diagonal embedding) discrete hence closed subgroup, Ax /K compact T2

Ak =K+ Ko x[] = P
veVy

Koo % Huevf Ok, < Ak induces (K..X, X Huevf Oxn) /Ox — A /K

(Z,[ﬁ, l)am(a,;)) X ]:I;U Ok, is a fundamental domain for Ax /K

10.3 Haar measures

C¢(X,R), positive Radon measure, Cc(X,R) = UK Ck(X,R), topology on these

(Lyf)(x) left inverse, (LyA)(f), left Haar measure, Haar’s theorem about the existence and uniqueness
of left Haar measures (PO)

,u.(U)>0ifUisopenand{]ZfeCc(X,R),f,%Oz:»/fdu)ﬂ
. @

examples: R,R*,Q, D Z,, K/Q,,Q5,C
mod(y) modulus, examples

G compact or discrete = mod(yp) = 1

10.4 Products and infinite products

Fubini’s theorem (PO)
Hé,ui(Xg} converges = Alp :VJ C I, #J <oc: /XfJoprJ du = HéeJ“i(Xi}_/)(J frdpy

Stone-Weierstrass theorem (PO)

10.5 Construction

unique left Haar measure on a restricted product, application for number fields: induced Haar measure
on Ar and Ag /K

23
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- J . N
u(Ag /K) = 4/|disck |, Minkowski’s theorem: HU Cy > (;) V|disck | = Jae KX,V eV : |a|, <
Cy ¢

3 e (vo) 4 3
t ation: =]
strong approximation: K < A} b K, is dense

Ag /K is connected

10.6 Ideles

Ix idele group, definition as a restricted product, Ix = A%, I has a finer topology

norm on Ag, = € Ix & |z| > 0, | - | is an open continuous surjective homomorphism with a continuous
section

I}, I}y C Ik is a closed subgroup, I/} — Rsg is canonical, I = I} x s(Rso) non-canonical

K* c Iy discrete subgroup, Ik, /K* is compact, Ik, € Ak closed and the topology coincides with the
induced one

application: div : Ix — Div(Og) divisor map, div is surjective, kerdiv = H e KX H i Ok,,
- i v oo v oo

Ix
(58 (KOO X HUQVW OKv)

div(K™) is the subgroup of principal fractional ideals, Clx = , corollary: Clg

is finite

10.7 Generalisation

modulus for K, equivalent to a pair (I ,Vm+), Ik (m), Px(m), Clg(m), special cases: m = 0 yields the
classical notions, narrow class group
Clg (m) is finite -

KXUL K*UL

(27
S e e ey Vg T X
0— K<Ur — Clg(m) — Clg — 0 exact, i (m)(R) R X | lvevf, o +pg'"") [O%

examples: @, quadratic real field

10.8 Dirichlet’s theorem

Cy, C =[] Cus CNEK* = pg
S-integers O, s, S-units Ok g, examples

Dirichlet’s theorem: O ¢ = g X L

10.9 Haar measure on [g
dy, normalised on K, dp = Hd,u,v

91 (27)"2 Rych
w

Vol(Ix /K*) =
10.10 Generalisation of the Pontryagin duality

unitary character, compact-open topology, W (K,U) base

10



e(z),U(e)

G T2, G discrete = G compact, G compact = G discrete

Functoriality: f: G; — G2 induces f: é; — E}'-;

= ﬁ“é; canonical, examples: Z, S*, R, finite dimensional R-vector space, p"Z/Z, Zp, Qp

Pontryagin’ theorem (PO), a short exact sequence induces a short exact sequence of dual groups

11
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