
Contents 

0 Introduction: 27+ y?=n 

0.1 Algebraic method ....... 

0.2 Analytic method........ 

1 Number fields and algebraic integers 

1.1 Algebraic integers 

1.2 Discriminant and integral basis 

    

12: ‘Application'to number-felds| 9.9). & = ge. <a Soe nea 

13 Cyclotomic fields ....... 

2 Dedekind domains 

3 Extensions of Dedekind domains 

3.1 Different and discriminant . . 

4 Decomposition of primes in Galois extensions 

5 Finiteness theorems 

5.1 Hermite’s Theorem . aa 

5.2 Dirichlet’s Theorem ..... - 

  

6 Distribution of primes 

6.1 Regulator............ 
6.2 Infinite products . . . 

6.3 Applications .......... 

6.4 Dirichlet L-functions 

6.5 - Factorisation of the Dedekind zeta function of abelian number fields . . . 

6.6 Formula for L(x,1) ..... - 

    

    

6.7 Class number formula for quadratic fields... 2.061. ee ee 

7 p-adic numbers 
7.1 Structure of complete discrete valuation fields 

7.2 Structureof K™ J... = 

7.3 Hensel’slemma ........ 

7.4 Newton polygon........ 

  

8 Finite extensions of complete discrete valuation fields 

8.1 Galois extensions of complete discrete valuation fields ...........--+..+-0% 

9 Global applications 

9.1 Comparison of local and global Galois groups... 2... ee 

9.2 Product formula........ 

10 Adéles and idéles 

10.1 Topological groups. ...... 

10.1.1 Subgroups 

10.1.2 Quotients 

1012 SAdeles =. ee tea 

10.3 Haar measures 

10.4 Products and infinite products 

      

a
a
a
n
a
n
a
 

o



  

      

  

      

  

      

  

1015 SConstriction 5.21 Gai. sr) ee es se to oe 9 
106, Tables 0s cece wt Pee ee to) ae elses 2 funn ie eae 10 

NOSE, /General ication 5 sa. 50ers ces gle ere etre men eee enn een 10 
10.8 10 

10.9 10 
10.10 Generalisation of the Pontryagin duality 10 

  

0 Introduction: 2?7+y?=n 

0.1 Algebraic method 

Gauss integers, Eudlidean nom, the ring of Gauss integers is a PID, primitive element, unique factori- 
sation for elements and ideals. 

Prime ideals of the Gauss integers: case work based on pM Z = (p) and p mod 4. 

0.2 Analytic method 

r(n), Cr(s); ¢(s), L(x, 8), (© =) (x 3) =o Ss (yi a) = multiplicative sequence, summation 

of a multiplicative sequence is multiplicative 

1 Number fields and algebraic integers 

1.1 Algebraic integers 

integral element (3 equivalent properties), integral elements form a subring, transitivity of integral ex- 

tension, integral closure, PIDs are integrally closed, integrality over Z, Ox for quadratic number fields 

1.2 Discriminant and integral basis 

trace, norm, trace and norm with coefficients of the minimal polynomial and with embeddings into an 

algebraically closed field for separable extensions 

trace is non-degenerate for separable extensions (PO), L © LY = Hom (L, K), (a) dual basis to (az) 

1.2.1 Application to number fields 

discriminant, disc # 0 & basis, disc(AC) = disc(A) det” C, disc = det” o;(a;), discriminant of a power 

base, sgn disc = (—1) 

Ox is a free Z-module, integral basis, discx 

equivalent condition for an integral basis with discriminant, Ox = Z[a] if the minimal polynomial can 

be translated to an Eistenstein polynomial



1.3. Cyclotomic fields 

Gal(Q(¢n)/Q) = (Z/NZ)*, [Q(Gx) : Q| = (N), Q(Gv4ar) = OlGw)Q(Cnz), Q(Gv) NQCrz) = Q. 

dise(1, Gy... 6807) | N°), Og¢pny = Zor]. 

For KNL = Q, d= ged(disex, disc): OxOz € Oxn € 50x. 

Oatew) = lon), discerc,n) = +p?” “PN-N—, the general formula follows from disexc1, = disc!" discl*®! 
(holds if ged(discx, disez) = 1) . 

2 Dedekind domains 

noetherian ring, Dedekind domain, PID = Dedekind, A Dedekind => S~1A Dedekind 

integral closure in a field extension is Dedekind, Ox is Dedekind, if A C B is integral then A field = B 

field 

fractional ideal 

Dedekind domains have unique facorisation of nonzero ideals. Lemma 1: every nonzero ideal of a noethe- 

rian ring contains a product of nonzero prime ideals. Lemma 2: p € Spec A \ (0) > p~? is a fractional 

ideal and p-tp=A 

Dedekind = (PID + UFD), unique factorisation of factorial ideals in Dedekind domains, vp, properties 

of Up 

I factorial, p prime > I/Ip is a 1-dim A/p-vector space 

Div(A), Prin(A), Cla 

Chinese Remainder Theorem for rings (for J + J = R, IN J = IJ) and Dedekind domains (for dis- 

tinct maximal ideals), Dedekind domain with finitely many maximal ideals is PID, the localisation of a 

Dedekind domain at a prime is PID 

localisation of Dedekind domains: prime ideals and prime decomposition of fractional ideals 

3 Extensions of Dedekind domains 

K/L finite separable field extension, A Dedekind with fraction field K, B the integral closure of A in L, 

pe Spec A, pB = |] QF 

k(Q;)/k(p) is a finite extension with degree fi, ) > eifi = (L: K] 

ramification index, residue degree, unramified, split, inert 

Kummer’s Theorem, p { Ny/x(f’(a)) > B/pB = k(p) [a] 

p is ramified in Q(VD) iff p | discx, p > 3 unramified prime splits iff (?) = 1, for D=1 (mod 4) 2 

splits iff D = 1 (mod 8) : 

decomposition of 2, 3, 5,.7 in Q(72) 

punramified + Ox/pOx is reduced + Tex gq : Ox /pOx x Ox /POK —> Fy is non-degenerate + p | disci 
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3.1 Different and discriminant 

norm of a fractional ideal, multiplicative, transitive, Nz/q(I) = [J : IJ], Nxq is the absolute norm 

different, Nxja(5x) = | disex |, Suyx = Suyjz(6r/KOm) 

relative discriminant, p unramified  p | disez,;, | disc, | = | discx ||"! Nyxyg(discz/«) 

for a composite Ki K2/Q = KiNK2: 6x,OK,K, © 9K, K2/Ky> diser, | disc?! disclf""*), ged(disex, , discx,) = 
1 = | disc, | = | discex, |*?l| discx, |", a rational prime p is unramified in Ky and Ko iff in KK» 

4 Decomposition of primes in Galois extensions 

action of the Galois group is transitive, Ve; = e, Vf; = f, efg=n 

decomposition group, |G] = g-|D(Q|p)|, D(a(Q)|p) = eD(Q|p)o~*, inertia subgroup 

1 1(Qlp) + D(Qlp) *2+ Gal(k(Q)/k(p)) — 1 exact, |D(Qlp)| = ef, I1(Qlp)| = € 

Qis the only prime above Q' ¢ Gal(L/K’) € D(Q\p), €(@'Ip) = <¥@__ 
{orbits of H on {Q1,.--,Qg}} 

~ Harpy 

Frobenius element, (2) — ¢ (2UE) 5-1 (75) - (gam) 4) ear ay) = FE) FE )L = (Gnae): (naz) = (% 
N >3 odd or 4| N: p € Z ramifies in Q(Cy)  p| N, for p|N e =p”) (p —1) 

PN: op(G) = 6h, f(plp) = order of p in (Z/NZ)*, g = p(N)/f 

Q(p*) is the unique quadratic subextension of Q(¢,), Law of Quadratic Reciprocity 

, {primes of K’ above p}.<+ 

  

  

  

5 Finiteness theorems 

(full) lattice, Minkowski’s Lemma 

Dise(Z), Dise(I) = disex Nxxq(I)?, 2, for any fractional ideal J A(I) C R” is a lattice and Vol(R"/A(J)) = 
Dise(I)/2"? 

ae 
Fa € I\ {0} st. |Nxyo(a)| < (2) 7 /jdiN(I), Minkowski Bound: every ideal class has 0 < mT) Wi 

(4)" Vidal, Cl is finite, examples: Q(¥/2), QV=14) nN@<™ nm 

5.1 Hermite’s Theorem 

lax /? > Gy nt 
=) only Q is unramified at every prime, Hermite’s Theorem 
n 

5.2 Dirichlet’s Theorem 

Wr = (OX)! is finite cyclic, for u € OX we We # Vo: KC: |o(u)le=1 

Dirichlet’s Theorem, example: Q(V2) has ¢ = 1+ V2 

4



Lemmata: Vk3ug : |ox(ux)| > 1,Vi # & : |oi(ux)| < 1; A = (aij), a4 > O,0i; < 0, >> ais =a = 

r-1 

6 Distribution of primes 

6.1 Regulator 

Regulator, example: real quadratic number field 

Artin’s Theorem (PO), 9 € OX,0 > 1,40°/? + 24 < |dx| then 0 is the fundamental unit of K, example: 

v2) 

N(t), examples: Q, Q(j) 
2" (Qn)? Rich i 2" (2n)"* Re a 

N(t) = t+ o(f!-), Ne(t) = —=- t+ 08-1 vie ON ae 
St = {x € J | |Nxjo(z)| <tN(J)}/O% > {IC Ox, 1 EC | ND) <t} 

proof in the quadratic case 

(n — 1)-Lipschitz parametrisable function; Marcus’ Lemma: B C R” bounded, OB (n — 1)-Lipschitz, 

A CR® full lattice + Va > 1 #(AN@B) = aon +O(a"-!) (PO) 

6.2 Infinite products 

E a 
absolute convergent product, TIa +n) abs.conv. we abs.conv., IL, iopes and ¢(s) are con- 

vergent for Re(s) > 1, ¢ has an analytic continuation to a meromorphic function on Re(s) > 0 with a 

simple pole at 1 

S, = «t + O(t}~°) > f has an analytic continuation to a meromorphic function on Re(s) > 1—6, with 

at most a simple pole at 1 with residue x 

6.3 Applications 

i Dedekind zeta ¢K(6) = T], gar = Dy oe converges absolutely for Res > 1 

dn = #{aC Ox |Na=n}, has an analytic continuation with a simple pole 
n 

ae f 2" (20)? Reh 
hi ly ti tinuati ith le pole, Res: = Cx(s) has an analytic continuation with a simple pole, Res; ¢x(s) w/ial 

1 1 1 aa Ee iloge 
Ma Nps De p=1 Nps eet 

Dirichlet and natural density, 7(x), ™(x) 

6.4 Dirichlet L-functions 

character group, G © G non-canonical, * is exact, G & G canonical (Pontryagin duality), yy x(g) =0 

or |G, >, x(a) = 0 oF [GI 
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Dirichlet character, conductor, primitive character, examples on Z/8Z, Z/12Z and the Legendre symbol 

L(x, 8), has an analytic continuation if x 4 xo 

6.5 Factorisation of the Dedekind zeta function of abelian number fields 

G(s) = TT, 2008) 

    Idx] 

2logexh B Qrh 
= Sor 

vp lOnlvP 

Dirichlet’s theorem: p =a (mod N) have Dirichlet density 1/(N). Generalisation: Chebotarev density 
theorem (PO), examples 

  p23, K =Q(yp*) > L(x,1) 

6.6 Formula for L(x,1) © 

Gauss sums, 7a(x) = X(a)r(x), 7(x)7(X) = x(-1)f, Ir) = VF 

a x(a) logsin oa or roy yw. x(a)a   L(x, 8 

  

  

6.7 Class number formula for quadratic fields 

xK K < Q(a,), identifying xx with xa, properties of Xax, T(Xdx) = V/|de| or iV/|dic| (PO) 

Dirichlet class number formula, corollary for dx < —4 even, example: Q(V—56) 

7 p-adic numbers 

Zp as an inverse limit, local integral domain, Q, as a fraction field, the fundamental system (a + p"Zp) 

defines a topology, Z, is complete, Z C Z» is dense 

|- |p absolute value, vp, Q, as a completion of Q 

examples for calculations in Q, 

valuation field, (non-)archimedean valuation, examples: Q with the standard and the p-adic valuations, 
Up, k(x) with vp(2) 

additive valuation, equivalence of additive valuations 

non-archimedean < bounded on Z, x # y > |x + y| = max((zl, |yl) 

completion: unique, K C K dense, an embedding of normed fields extends uniquely to the completion 

valuation ring, discrete valuation ring, normalised additive valuation, examples: Qp, k(x), C{{z}} 

equivalence of non-archimedean norms ¢ valuation rings are the same 

Ox is an integrally closed local domain, mx maximal ideal, Og = lim Ox/(x"), Ox DVR © Ox local 

Dedekind domain 

Ox has a “thick” boundary



7.1 Structure of complete discrete valuation fields 

unique writing as a Laurent series 

  

For k= Fy: (1+ 2a)? € 14 nminl)+4.np)Ox (14 7%)” €1+2"1Ox, Va € kala] € Ox 

Teichmiiller lift 

  

a]? = [a] 

7.2 Structure of K* 

Ux separated and exhausted filtration 

7.3 Hensel’s lemma 

Gauss norm, primitive polynomial, Hensel’s lemma 

f(a0) =0 (mod mx), f’(ao) #0 (mod mx) => f(a) =0,a =a (mod mx), example: 2? — a 

||] = max(|ao], |an|) for irreducible polynomials 

norm on a vector space, equivalence of norms, any two norms are equivalent over finite dimensional vector 

spaces and the space is complete 

a norm extends uniquely as |x|, = INzjx(x)[/" 

7.4 Newton polygon 

NP(f), there are exactly m; roots in K with valuation s; 

f irreducible > NP(f) has only one slope, if NP(f) has only one slope and it is of the form s = t/n with 

gcd(t,n) =1= f is irreducible, example 

8 Finite extensions of complete discrete valuation fields 

O, is a free Ox-module of rank [L : K], a basis over Ox reduces to a basis over k 

ramification index, residue degree, unramified and totally ramified extension 

e(L|K) f(L|K) = [L: K], {a | a} k-basis > {a;r},* | i,j} form an Ox-basis of Ox 

Oz, = Ox|rz] in the totally ramified case 

k’/k finite separable > 3K’/K unramified with kx: = k, K’ is unique, K'/K is Galois iff k’/k is. For 

L/K finite Homx-aig(K’, L) & Homp-aig(k’, kr) 

L/K finite, k,/k separable = A!Lo C L so that Lo/K is unramified and kp, = kz, Lo contains all 

unramified extensions. Example: F, 

v(a), Noje(a), ¥«(Nz/x(a)) = f(E/K oz (a) 

9 dual lattice of Or, 61/« different, On /« discriminant, behaviour for subextensions, 6y,/¢ = (, f'(a)) 

Totally ramified > vz(dz/x) = e(L|K) — 1, equality in the tamely ramified case. Unramified = 

vi(5r/K) = 9 
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maximal unramified and tamely ramified extensions, these are infinite Galois extensions, KY = K™. 

Upnrpna (0) 

8.1 Galois extensions of complete discrete valuation fields 

I1/x inertia subgroup, G, filtration, UP, equivalent definition of G, 

chark = 0 = Gi = 1, Go/G; cyclic finite. chark = p > 0 > G; finite group of p-power order, Go/Gi 
finite cyclic group of order prime to p, example: Qp(¢p»)/Q, 

9 Global applications 

Ostrowski’s theorem 

place, | -|o,, Up,|- |p, |- |» % |-|w and any non-trivial norm is equivalent to one of these 

weak approximation: K > Tis. has dense image 

L@x Ky & Ge Lw, a new proof of the fundamental equation, Trp (x) = Dy Try,,/K,(«), same 
for norm, example for computing a prime decomposition 

9.1 Comparison of local and global Galois groups 

tw induced map, iy induces Gal(Lw/Ky) + Duly, I(Lw|Kv) ~ I, example: computing a Galois group 

9.2 Product formula 

II, lel =1, lemma: |Nx7o(@)lp = TT, Helv 

10 Adéles and idéles 

10.1 Topological groups 

topological group, examples, T2 < T1 + e is closed 

locally compact topological group, examples 

lim X; S Tl% compact. 

10.1.1 Subgroups 

H<G= FHisa topological group 

every locally closed subgroup is closed, every locally compact of a T2 group is closed, any discrete 

subgroup is closed 

in locally compact groups: a subgroup is closed + locally compact



10.1.2 Quotients 

the quotient map is open, Gp H => G/H is a topological group and the quotient map is continuous 

H C G closed & G/H T2, H C G open & G/H discrete, G locally compact and H closed > G/H 

locally compact, example 

f :G-—» H continuous map induces f’ : G/ker f - H continuous bijection, if f is open then f’ is a 

homeomorphism, example 

10.2 Adéles 

restricted product, V, Voo, Vp 

Gy locally compact = [J Gy locally compact 

Ax adéle ring locally compact, Ky 4 Ax closed 

K < Ax (diagonal embedding) discrete hence closed subgroup, Ax /K compact T2 

Ac =K+KaxI]_), Ox 
vEVy 

Kes X Mae Ox, Ax induces (Kx x Iie, ox.) /Ox 7 Ak/K 

(32,00. ecolea)) xT], Ox, is a fundamental domain for Ax /K ‘ g 

10.3 Haar measures 

C,(X,R), positive Radon measure, C.(X,R) = Ue Cx(X,R), topology on these 

(Lgf)(z) left inverse, (LyA)(f), left Haar measure, Haar’s theorem about the existence and uniqueness 

of left Haar measures (PO) 

M(U) > Of U is open and 0> fe C(X,R),f#0 f fau>0 
G 

examples: R,R*,Q, > Zp, K/Qp, QF ,C 

mod(y) modulus, examples 

G compact or discrete = mod() = 1 

10.4 Products and infinite products 

Fubini’s theorem (PO) 

[I :(X2) converges = Sp :WJ CI, #J < 00: [ froprs du= J], (Xs) [ fadps 
i Be id Xs, 

Stone-Weierstrass theorem (PO) 

10.5 Construction 

unique left Haar measure on a restricted product, application for number fields: induced Haar measure 

on Ax and Ax /K 
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7 4 - aN 
uW(Ax/K) = \/|discx |, Minkowski’s theorem: II, hs (2) Vidiscx | > Ja ¢ K*,Wo EV: Jay < 

Cy 

strong approximation: K + Aw) = IL Ky is dense 
ue~VO 

Ax/K is connected 

10.6 Idéles 

Ix idéle group, definition as a restricted product, Ix = AX, Ix has a finer topology 

norm on Ax, « € Ix + |x| > 0, |-| is an open continuous surjective homomorphism with a continuous 

section 

Tk, Ek C Ix is a closed subgroup, Ix /Ik + Rso is canonical, Ix © Ik x s(R>0) non-canonical 

K* C Ix discrete subgroup, Ik,/K™* is compact, Ik C Ax closed and the topology coincides with the 

induced one 

application: div : Ix — Div(Ox) divisor map, div is surjective, kerdiv = [] pe hs II av, Oke : vEVo0 U¢Ve0 
L 

div(K%) is the subgroup of principal fractional ideals, Clk = us y’ corollary: Clix 
KX (Koo x Thgv., Ox. 

is finite 

10.7 Generalisation 

modulus for K, equivalent to a pair (I, Vg"), Zx(m), Px(m), Cla(m), special cases: m = 0 yields the 

classical notions, narrow class group 

Clic(m) is finite 

K*Uk KXUK ve Ok» b 
Kelme? Clx(m) + Clx + 0 exact, Una mo(R)Y® x han To fOx   07> 

examples: Q, quadratic real field 

10.8 Dirichlet’s theorem 

Cy, C=] Cy, CN K* = ux 

‘S-integers Ox,s, S-units OX g, examples 

Dirichlet’s theorem: Ox 5 = wx x L 

10.9 Haar measure on Ix 

dy normalised on Ky, du = [J dy 

2P (Qn) Rich 
w 

Vol(Ix/K*) = 

10.10 Generalisation of the Pontryagin duality 

unitary character, compact-open topology, W(K, U) base 

10



e(z),U(e) 

é T2, G discrete > G compact, G compact > G discrete 

Functoriality: f : Gi —> Gz induces f : @2 + Gi 

G  limG, canonical, examples: Z,$",R, finite dimensional R-vector space, p-"2Z/Z, Zp, Qp 

Pontryagin’ theorem (PO), a short exact sequence induces a short exact sequence of dual groups 
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